

s3-credentials

[image: PyPI] [https://pypi.org/project/s3-credentials/]
[image: Changelog] [https://github.com/simonw/s3-credentials/releases]
[image: Tests] [https://github.com/simonw/s3-credentials/actions?query=workflow%3ATest]
[image: Documentation Status] [https://s3-credentials.readthedocs.org/]
[image: License] [https://github.com/simonw/s3-credentials/blob/master/LICENSE]

A tool for creating credentials for accessing S3 buckets

For project background, see s3-credentials: a tool for creating credentials for S3 buckets [https://simonwillison.net/2021/Nov/3/s3-credentials/] on my blog.

Why would you need this? If you want to read and write to an S3 bucket from an automated script somewhere, you’ll need an access key and secret key to authenticate your calls. This tool helps you create those with the most restrictive permissions possible.

If your code is running in EC2 or Lambda you can likely solve this using roles instead [https://aws.amazon.com/premiumsupport/knowledge-center/lambda-execution-role-s3-bucket/]. This tool is mainly useful for when you are interacting with S3 from outside the boundaries of AWS itself.

Installation

Install this tool using pip:

$ pip install s3-credentials

Documentation

	Configuration
	Common command options

	Creating S3 credentials
	Changes that will be made to your AWS account

	Using a custom policy

	Other commands
	policy

	whoami

	list-users

	list-buckets

	list-bucket

	list-user-policies

	list-roles

	delete-user

	put-object

	put-objects

	delete-objects

	get-object

	get-objects

	set-cors-policy and get-cors-policy

	debug-bucket

	Policy documents
	read-write (default)

	--read-only

	--write-only

	--prefix my-prefix/

	--prefix my-prefix/ --read-only

	--prefix my-prefix/ --write-only

	public bucket policy

	Command help
	s3-credentials –help

	s3-credentials create –help

	s3-credentials debug-bucket –help

	s3-credentials delete-objects –help

	s3-credentials delete-user –help

	s3-credentials get-cors-policy –help

	s3-credentials get-object –help

	s3-credentials get-objects –help

	s3-credentials list-bucket –help

	s3-credentials list-buckets –help

	s3-credentials list-roles –help

	s3-credentials list-user-policies –help

	s3-credentials list-users –help

	s3-credentials policy –help

	s3-credentials put-object –help

	s3-credentials put-objects –help

	s3-credentials set-cors-policy –help

	s3-credentials whoami –help

	Contributing
	Integration tests

Tips

You can see a log of changes made by this tool using AWS CloudTrail - the following link should provide an Event History interface showing revelant changes made to your AWS account such as CreateAccessKey, CreateUser, PutUserPolicy and more:

https://console.aws.amazon.com/cloudtrail/home

You can view a list of your S3 buckets and confirm that they have the desired permissions and properties here:

https://console.aws.amazon.com/s3/home

The management interface for an individual bucket is at https://console.aws.amazon.com/s3/buckets/NAME-OF-BUCKET

Configuration

This tool uses boto3 [https://boto3.amazonaws.com/] under the hood which supports a number of different ways [https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html] of providing your AWS credentials.

If you have an existing ~/.aws/config or ~/.aws/credentials file the tool will use that.

One way to create those files is using the aws configure command, available if you first run pip install awscli.

Alternatively, you can set the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables before calling this tool.

You can also use the --access-key=, --secret-key=, --session-token and --auth options documented below.

Common command options

All of the s3-credentials commands also accept the following options for authenticating against AWS:

	--access-key: AWS access key ID

	--secret-key: AWS secret access key

	--session-token: AWS session token

	--endpoint-url: Custom endpoint URL

	--auth: file (or - for standard input) containing credentials to use

The file passed to --auth can be either a JSON file or an INI file. JSON files should contain the following:

{
 "AccessKeyId": "AKIAWXFXAIOZA5IR5PY4",
 "SecretAccessKey": "g63..."
}

The JSON file can also optionally include a session token in a "SessionToken" key.

The INI format variant of this file should look like this:

[default]
aws_access_key_id=AKIAWXFXAIOZNCR2ST7S
aws_secret_access_key=g63...

Any section headers will do - the tool will use the information from the first section it finds in the file which has a aws_access_key_id key.

These auth file formats are the same as those that can be created using the create command.

Creating S3 credentials

The s3-credentials create command is the core feature of this tool. Pass it one or more S3 bucket names, specify a policy (read-write, read-only or write-only) and it will return AWS credentials that can be used to access those buckets.

These credentials can be temporary or permanent.

	Temporary credentials can last for between 15 minutes and 12 hours. They are created using STS.AssumeRole() [https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html].

	Permanent credentials never expire. They are created by first creating a dedicated AWS user, then assigning a policy to that user and creating and returning an access key for it.

Make sure to record the SecretAccessKey because it will only be displayed once and cannot be recreated later on.

In this example I create permanent credentials for reading and writing files in my static.niche-museums.com S3 bucket:

% s3-credentials create static.niche-museums.com

Created user: s3.read-write.static.niche-museums.com with permissions boundary: arn:aws:iam::aws:policy/AmazonS3FullAccess
Attached policy s3.read-write.static.niche-museums.com to user s3.read-write.static.niche-museums.com
Created access key for user: s3.read-write.static.niche-museums.com
{
 "UserName": "s3.read-write.static.niche-museums.com",
 "AccessKeyId": "AKIAWXFXAIOZOYLZAEW5",
 "Status": "Active",
 "SecretAccessKey": "...",
 "CreateDate": "2021-11-03 01:38:24+00:00"
}

If you add --format ini the credentials will be output in INI format, suitable for pasting into a ~/.aws/credentials file:

% s3-credentials create static.niche-museums.com --format ini > ini.txt
Created user: s3.read-write.static.niche-museums.com with permissions boundary: arn:aws:iam::aws:policy/AmazonS3FullAccess
Attached policy s3.read-write.static.niche-museums.com to user s3.read-write.static.niche-museums.com
Created access key for user: s3.read-write.static.niche-museums.com
% cat ini.txt
[default]
aws_access_key_id=AKIAWXFXAIOZKGXI4PVO
aws_secret_access_key=...

To create temporary credentials, add --duration 15m (or 1h or 1200s). The specified duration must be between 15 minutes and 12 hours.

% s3-credentials create static.niche-museums.com --duration 15m
Assume role against arn:aws:iam::462092780466:role/s3-credentials.AmazonS3FullAccess for 900s
{
 "AccessKeyId": "ASIAWXFXAIOZPAHAYHUG",
 "SecretAccessKey": "Nrnoc...",
 "SessionToken": "FwoGZXIvYXd...mr9Fjs=",
 "Expiration": "2021-11-11 03:24:07+00:00"
}

When using temporary credentials the session token must be passed in addition to the access key and secret key.

The create command has a number of options:

	--format TEXT: The output format to use. Defaults to json, but can also be ini.

	--duration 15m: For temporary credentials, how long should they last? This can be specified in seconds, minutes or hours using a suffix of s, m or h - but must be between 15 minutes and 12 hours.

	--username TEXT: The username to use for the user that is created by the command (or the username of an existing user if you do not want to create a new one). If ommitted a default such as s3.read-write.static.niche-museums.com will be used.

	-c, --create-bucket: Create the buckets if they do not exist. Without this any missing buckets will be treated as an error.

	--prefix my-prefix/: Credentials should only allow access to keys in the S3 bucket that start with this prefix.

	--public: When creating a bucket, set it so that any file uploaded to that bucket can be downloaded by anyone who knows its filename. This attaches the public bucket policy and sets the PublicAccessBlockConfiguration to false for every option [https://docs.aws.amazon.com/AmazonS3/latest/API/API_PublicAccessBlockConfiguration.html].

	--website: Sets the bucket to public and configures it to act as a website, with index.html treated as an index page and error.html used to display custom errors. The URL for the website will be http://<bucket-name>.s3-website.<region>.amazonaws.com/ - the region defaults to us-east-1 unless you specify a --bucket-region.

	--read-only: The user should only be allowed to read files from the bucket.

	--write-only: The user should only be allowed to write files to the bucket, but not read them. This can be useful for logging and backups.

	--policy filepath-or-string: A custom policy document (as a file path, literal JSON string or - for standard input) - see below.

	--statement json-statement: Custom JSON statement block to be added to the generated policy.

	--bucket-region: If creating buckets, the region in which they should be created.

	--silent: Don’t output details of what is happening, just output the JSON for the created access credentials at the end.

	--dry-run: Output details of AWS changes that would have been made without applying them.

	--user-permissions-boundary: Custom permissions boundary [https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html] to use for users created by this tool. The default is to restrict those users to only interacting with S3, taking the --read-only option into account. Use none to create users without any permissions boundary at all.

Changes that will be made to your AWS account

How the tool works varies depending on if you are creating temporary or permanent credentials.

For permanent credentials, the steps are as follows:

	Confirm that each of the specified buckets exists. If they do not and --create-bucket was passed create them - otherwise exit with an error.

	If a username was not specified, derive a username using the s3.$permission.$buckets format.

	If a user with that username does not exist, create one with an S3 permissions boundary of AmazonS3ReadOnlyAccess [https://github.com/glassechidna/trackiam/blob/master/policies/AmazonS3ReadOnlyAccess.json] for --read-only or AmazonS3FullAccess [https://github.com/glassechidna/trackiam/blob/master/policies/AmazonS3FullAccess.json] otherwise - unless --user-permissions-boundary=none was passed, or a custom permissions boundary string.

	For each specified bucket, add an inline IAM policy to the user that gives them permission to either read-only, write-only or read-write against that bucket.

	Create a new access key for that user and output the key and its secret to the console.

For temporary credentials:

	Confirm or create buckets, in the same way as for permanent credentials.

	Check if an AWS role called s3-credentials.AmazonS3FullAccess exists. If it does not exist create it, configured to allow the user’s AWS account to assume it and with the arn:aws:iam::aws:policy/AmazonS3FullAccess policy attached.

	Use STS.AssumeRole() to return temporary credentials that are restricted to just the specified buckets and specified read-only/read-write/write-only policy.

You can run the create command with the --dry-run option to see a summary of changes that would be applied, including details of generated policy documents, without actually applying those changes.

Using a custom policy

The policy documents applied by this tool are listed here.

If you want to use a custom policy document you can do so using the --policy option.

First, create your policy document as a JSON file that looks something like this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:GetObject*", "s3:ListBucket"],
 "Resource": [
 "arn:aws:s3:::$!BUCKET_NAME!$",
 "arn:aws:s3:::$!BUCKET_NAME!$/*"
],
 }
]
}

Note the $!BUCKET_NAME!$ strings - these will be replaced with the name of the relevant S3 bucket before the policy is applied.

Save that as custom-policy.json and apply it using the following command:

% s3-credentials create my-s3-bucket \
 --policy custom-policy.json

You can also pass - to read from standard input, or you can pass the literal JSON string directly to the --policy option:

% s3-credentials create my-s3-bucket --policy '{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:GetObject*", "s3:ListBucket"],
 "Resource": [
 "arn:aws:s3:::$!BUCKET_NAME!$",
 "arn:aws:s3:::$!BUCKET_NAME!$/*"
],
 }
]
}'

You can also specify one or more extra statement blocks that should be added to the generated policy, using --statement JSON. This example enables the AWS textract: APIs for the generated credentials, useful for using with the s3-ocr [https://datasette.io/tools/s3-ocr] tool:

% s3-credentials create my-s3-bucket --statement '{
 "Effect": "Allow",
 "Action": "textract:*",
 "Resource": "*"
}'

Other commands

	policy

	whoami

	list-users

	list-buckets

	list-bucket

	list-user-policies

	list-roles

	delete-user

	put-object

	put-objects

	delete-objects

	get-object

	get-objects

	set-cors-policy and get-cors-policy

	debug-bucket

policy

You can use the s3-credentials policy command to generate the JSON policy document that would be used without applying it. The command takes one or more required bucket names and a subset of the options available on the create command:

	--read-only - generate a read-only policy

	--write-only - generate a write-only policy

	--prefix - policy should be restricted to keys in the bucket that start with this prefix

	--statement json-statement: Custom JSON statement block

	--public-bucket - generate a bucket policy for a public bucket

With none of these options it defaults to a read-write policy.

% s3-credentials policy my-bucket --read-only
{
 "Version": "2012-10-17",
...

whoami

To see which user you are authenticated as:

s3-credentials whoami

This will output JSON representing the currently authenticated user.

Using this with the --auth option is useful for verifying created credentials:

s3-credentials create static.niche-museums.com --read-only > auth.json
s3-credentials whoami --auth auth.json
{
 "UserId": "AIDAWXFXAIOZPIZC6MHAG",
 "Account": "462092780466",
 "Arn": "arn:aws:iam::462092780466:user/s3.read-only.static.niche-museums.com"
}

list-users

To see a list of all users that exist for your AWS account:

s3-credentials list-users

This will return a pretty-printed array of JSON objects by default.

Add --nl to collapse these to single lines as valid newline-delimited JSON.

Add --csv or --tsv to get back CSV or TSV data.

list-buckets

Shows a list of all buckets in your AWS account.

% s3-credentials list-buckets
[
 {
 "Name": "aws-cloudtrail-logs-462092780466-f2c900d3",
 "CreationDate": "2021-03-25 22:19:54+00:00"
 },
 {
 "Name": "simonw-test-bucket-for-s3-credentials",
 "CreationDate": "2021-11-03 21:46:12+00:00"
 }
]

With no extra arguments this will show all available buckets - you can also add one or more explicit bucket names to see just those buckets:

% s3-credentials list-buckets simonw-test-bucket-for-s3-credentials
[
 {
 "Name": "simonw-test-bucket-for-s3-credentials",
 "CreationDate": "2021-11-03 21:46:12+00:00"
 }
]

This accepts the same --nl, --csv and --tsv options as list-users.

Add --details to include details of the bucket ACL, website configuration and public access block settings. This is useful for running a security audit of your buckets.

Using --details adds several additional API calls for each bucket, so it is advisable to use it with one or more explicit bucket names.

% s3-credentials list-buckets simonw-test-public-website-bucket --details
[
 {
 "Name": "simonw-test-public-website-bucket",
 "CreationDate": "2021-11-08 22:53:30+00:00",
 "region": "us-east-1",
 "bucket_acl": {
 "Owner": {
 "DisplayName": "simon",
 "ID": "abcdeabcdeabcdeabcdeabcdeabcde0001"
 },
 "Grants": [
 {
 "Grantee": {
 "DisplayName": "simon",
 "ID": "abcdeabcdeabcdeabcdeabcdeabcde0001",
 "Type": "CanonicalUser"
 },
 "Permission": "FULL_CONTROL"
 }
]
 },
 "public_access_block": null,
 "bucket_website": {
 "IndexDocument": {
 "Suffix": "index.html"
 },
 "ErrorDocument": {
 "Key": "error.html"
 },
 "url": "http://simonw-test-public-website-bucket.s3-website.us-east-1.amazonaws.com/"
 }
 }
]

A bucket with public_access_block might look like this:

{
 "Name": "aws-cloudtrail-logs-462092780466-f2c900d3",
 "CreationDate": "2021-03-25 22:19:54+00:00",
 "bucket_acl": {
 "Owner": {
 "DisplayName": "simon",
 "ID": "abcdeabcdeabcdeabcdeabcdeabcde0001"
 },
 "Grants": [
 {
 "Grantee": {
 "DisplayName": "simon",
 "ID": "abcdeabcdeabcdeabcdeabcdeabcde0001",
 "Type": "CanonicalUser"
 },
 "Permission": "FULL_CONTROL"
 }
]
 },
 "public_access_block": {
 "BlockPublicAcls": true,
 "IgnorePublicAcls": true,
 "BlockPublicPolicy": true,
 "RestrictPublicBuckets": true
 },
 "bucket_website": null
}

list-bucket

To list the contents of a bucket, use list-bucket:

% s3-credentials list-bucket static.niche-museums.com
[
 {
 "Key": "Griffith-Observatory.jpg",
 "LastModified": "2020-01-05 16:51:01+00:00",
 "ETag": "\"a4cff17d189e7eb0c4d3bf0257e56885\"",
 "Size": 3360040,
 "StorageClass": "STANDARD"
 },
 {
 "Key": "IMG_0353.jpeg",
 "LastModified": "2019-10-25 02:50:49+00:00",
 "ETag": "\"d45bab0b65c0e4b03b2ac0359c7267e3\"",
 "Size": 2581023,
 "StorageClass": "STANDARD"
 }
]

You can use the --prefix myprefix/ option to list only keys that start with a specific prefix.

The commmand accepts the same --nl, --csv and --tsv options as list-users.

Add --urls to include a URL field in the output providing the full URL to each object.

list-user-policies

To see a list of inline policies belonging to users:

% s3-credentials list-user-policies s3.read-write.static.niche-museums.com

User: s3.read-write.static.niche-museums.com
PolicyName: s3.read-write.static.niche-museums.com
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::static.niche-museums.com"
]
 },
 {
 "Effect": "Allow",
 "Action": "s3:*Object",
 "Resource": [
 "arn:aws:s3:::static.niche-museums.com/*"
]
 }
]
}

You can pass any number of usernames here. If you don’t specify a username the tool will loop through every user belonging to your account:

s3-credentials list-user-policies

list-roles

The list-roles command lists all of the roles available for the authenticated account.

Add --details to fetch the inline and attached managed policies for each row as well - this is slower as it needs to make several additional API calls for each role.

You can optionally add one or more role names to the command to display and fetch details about just those specific roles.

Example usage:

% s3-credentials list-roles AWSServiceRoleForLightsail --details
[
 {
 "Path": "/aws-service-role/lightsail.amazonaws.com/",
 "RoleName": "AWSServiceRoleForLightsail",
 "RoleId": "AROAWXFXAIOZG5ACQ5NZ5",
 "Arn": "arn:aws:iam::462092780466:role/aws-service-role/lightsail.amazonaws.com/AWSServiceRoleForLightsail",
 "CreateDate": "2021-01-15 21:41:48+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lightsail.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "MaxSessionDuration": 3600,
 "inline_policies": [
 {
 "RoleName": "AWSServiceRoleForLightsail",
 "PolicyName": "LightsailExportAccess",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:CreateGrant"
],
 "Resource": "arn:aws:kms:*:451833091580:key/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "cloudformation:DescribeStacks"
],
 "Resource": "arn:aws:cloudformation:*:*:stack/*/*"
 }
]
 }
 }
],
 "attached_policies": [
 {
 "PolicyName": "LightsailExportAccess",
 "PolicyId": "ANPAJ4LZGPQLZWMVR4WMQ",
 "Arn": "arn:aws:iam::aws:policy/aws-service-role/LightsailExportAccess",
 "Path": "/aws-service-role/",
 "DefaultVersionId": "v2",
 "AttachmentCount": 1,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "Description": "AWS Lightsail service linked role policy which grants permissions to export resources",
 "CreateDate": "2018-09-28 16:35:54+00:00",
 "UpdateDate": "2022-01-15 01:45:33+00:00",
 "Tags": [],
 "PolicyVersion": {
 "Document": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/lightsail.amazonaws.com/AWSServiceRoleForLightsail*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CopySnapshot",
 "ec2:DescribeSnapshots",
 "ec2:CopyImage",
 "ec2:DescribeImages"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetAccountPublicAccessBlock"
],
 "Resource": "*"
 }
]
 },
 "VersionId": "v2",
 "IsDefaultVersion": true,
 "CreateDate": "2022-01-15 01:45:33+00:00"
 }
 }
]
 }
]

Add --nl to collapse these to single lines as valid newline-delimited JSON.

Add --csv or --tsv to get back CSV or TSV data.

delete-user

In trying out this tool it’s possible you will create several different user accounts that you later decide to clean up.

Deleting AWS users is a little fiddly: you first need to delete their access keys, then their inline policies and finally the user themselves.

The s3-credentials delete-user handles this for you:

% s3-credentials delete-user s3.read-write.simonw-test-bucket-10
User: s3.read-write.simonw-test-bucket-10
 Deleted policy: s3.read-write.simonw-test-bucket-10
 Deleted access key: AKIAWXFXAIOZK3GPEIWR
 Deleted user

You can pass it multiple usernames to delete multiple users at a time.

put-object

You can upload a file to a key in an S3 bucket using s3-credentials put-object:

s3-credentials put-object my-bucket my-key.txt /path/to/file.txt

Use - as the file name to upload from standard input:

echo "Hello" | s3-credentials put-object my-bucket hello.txt -

This command shows a progress bar by default. Use -s or --silent to hide the progress bar.

The Content-Type on the uploaded object will be automatically set based on the file extension. If you are using standard input, or you want to over-ride the detected type, you can do so using the --content-type option:

echo "<h1>Hello World</h1>" | \
 s3-credentials put-object my-bucket hello.html - --content-type "text/html"

put-objects

s3-credentials put-objects can be used to upload more than one file at once.

Pass one or more filenames to upload them to the root of your bucket:

s3-credentials put-objects my-bucket one.txt two.txt three.txt

Use --prefix my-prefix to upload them to the specified prefix:

s3-credentials put-objects my-bucket one.txt --prefix my-prefix

This will upload the file to my-prefix/one.txt.

Pass one or more directories to upload the contents of those directories.
. uploads everything in your current directory:

s3-credentials put-objects my-bucket .

Passing directory names will upload the directory and all of its contents:

s3-credentials put-objects my-bucket my-directory

If my-directory had files one.txt and two.txt in it, the result would be:

my-directory/one.txt
my-directory/two.txt

A progress bar will be shown by default. Use -s or --silent to hide it.

Add --dry-run to get a preview of what would be uploaded without uploading anything:

s3-credentials put-objects my-bucket . --dry-run

out/IMG_1254.jpeg => s3://my-bucket/out/IMG_1254.jpeg
out/alverstone-mead-2.jpg => s3://my-bucket/out/alverstone-mead-2.jpg
out/alverstone-mead-1.jpg => s3://my-bucket/out/alverstone-mead-1.jpg

delete-objects

s3-credentials delete-objects can be used to delete one or more keys from the bucket.

Pass one or more keys to delete them:

s3-credentials delete-objects my-bucket one.txt two.txt three.txt

Use --prefix my-prefix to delete all keys with the specified prefix:

s3-credentials delete-objects my-bucket --prefix my-prefix

Pass -d or --dry-run to perform a dry-run of the deletion, which will list the keys that would be deleted without actually deleting them.

s3-credentials delete-objects my-bucket --prefix my-prefix --dry-run

get-object

To download a file from a bucket use s3-credentials get-object:

s3-credentials get-object my-bucket hello.txt

This defaults to outputting the downloaded file to the terminal. You can instead direct it to save to a file on disk using the -o or --output option:

s3-credentials get-object my-bucket hello.txt -o /path/to/hello.txt

get-objects

s3-credentials get-objects can be used to download multiple files from a bucket at once.

Without extra arguments, this downloads everything:

s3-credentials get-objects my-bucket

Files will be written to the current directory by default, preserving their directory structure from the bucket.

To write to a different directory use --output or -o:

s3-credentials get-objects my-bucket -o /path/to/output

To download multiple specific files, add them as arguments to the command:

s3-credentials get-objects my-bucket one.txt two.txt path/to/three.txt

You can pass one or more --pattern or -p options to download files matching a specific pattern:

s3-credentials get-objects my-bucket -p "*.txt" -p "static/*.css"

Here the * wildcard will match any sequence of characters, including /. ? will match a single character.

A progress bar will be shown by default. Use -s or --silent to hide it.

set-cors-policy and get-cors-policy

You can set the CORS policy [https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html] for a bucket using the set-cors-policy command. S3 CORS policies are set at the bucket level - they cannot be set for individual items.

First, create the bucket. Make sure to make it --public:

s3-credentials create my-cors-bucket --public -c

You can set a default CORS policy - allowing GET requests from any origin - like this:

s3-credentials set-cors-policy my-cors-bucket

You can use the get-cors-policy command to confirm the policy you have set:

s3-credentials get-cors-policy my-cors-bucket
[
 {
 "ID": "set-by-s3-credentials",
 "AllowedMethods": [
 "GET"
],
 "AllowedOrigins": [
 "*"
]
 }
]

To customize the CORS policy, use the following options:

	-m/--allowed-method - Allowed method e.g. GET

	-h/--allowed-header - Allowed header e.g. Authorization

	-o/--allowed-origin - Allowed origin e.g. https://www.example.com/

	-e/--expose-header - Header to expose e.g. ETag

	--max-age-seconds - How long to cache preflight requests

Each of these can be passed multiple times with the exception of --max-age-seconds.

The following example allows GET and PUT methods from code running on https://www.example.com/, allows the encoming Authorization header and exposes the ETag header. It also sets the client to cache preflight requests for 60 seconds:

s3-credentials set-cors-policy my-cors-bucket2 \
 --allowed-method GET \
 --allowed-method PUT \
 --allowed-origin https://www.example.com/ \
 --expose-header ETag \
 --max-age-seconds 60

debug-bucket

The debug-bucket command is useful for diagnosing issues with a bucket:

s3-credentials debug-bucket my-bucket

Example output:

Bucket ACL:
{
 "Owner": {
 "DisplayName": "username",
 "ID": "cc8ca3a037c6a7c1fa7580076bf7cd1949b3f2f58f01c9df9e53c51f6a249910"
 },
 "Grants": [
 {
 "Grantee": {
 "DisplayName": "username",
 "ID": "cc8ca3a037c6a7c1fa7580076bf7cd1949b3f2f58f01c9df9e53c51f6a249910",
 "Type": "CanonicalUser"
 },
 "Permission": "FULL_CONTROL"
 }
]
}
Bucket policy status:
{
 "PolicyStatus": {
 "IsPublic": true
 }
}
Bucket public access block:
{
 "PublicAccessBlockConfiguration": {
 "BlockPublicAcls": false,
 "IgnorePublicAcls": false,
 "BlockPublicPolicy": false,
 "RestrictPublicBuckets": false
 }
}

Policy documents

The IAM policies generated by this tool for a bucket called my-s3-bucket would look like this:

read-write (default)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": [
 "arn:aws:s3:::my-s3-bucket"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:GetObjectLegalHold",
 "s3:GetObjectRetention",
 "s3:GetObjectTagging"
],
 "Resource": [
 "arn:aws:s3:::my-s3-bucket/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::my-s3-bucket/*"
]
 }
]
}

--read-only

 Command help

Command help

This page shows the --help output for all of the s3-credentials commands.

 Contributing

Contributing

To contribute to this tool, first checkout the code [https://github.com/simonw/s3-credentials]. Then create a new virtual environment:

cd s3-credentials
python -m venv venv
source venv/bin/activate

Or if you are using pipenv:

pipenv shell

Now install the dependencies and test dependencies:

pip install -e '.[test]'

To run the tests:

pytest

Any changes to the generated policies require an update to the README using Cog [https://github.com/nedbat/cog]:

cog -r README.md

Integration tests

The main tests all use stubbed interfaces to AWS, so will not make any outbound API calls.

There is also a suite of integration tests in tests/test_integration.py which DO make API calls to AWS, using credentials from your environment variables or ~/.aws/credentials file.

These tests are skipped by default. If you have AWS configured with an account that has permission to run the actions required by s3-credentials (create users, roles, buckets etc) you can run these tests using:

pytest --integration

The tests will create a number of different users and buckets and should then delete them once they finish running.

 Index

Index

nav.xhtml

 Table of Contents

 		
 s3-credentials

 		
 Configuration

 		
 Common command options

 		
 Creating S3 credentials

 		
 Changes that will be made to your AWS account

 		
 Using a custom policy

 		
 Other commands

 		
 policy

 		
 whoami

 		
 list-users

 		
 list-buckets

 		
 list-bucket

 		
 list-user-policies

 		
 list-roles

 		
 delete-user

 		
 put-object

 		
 put-objects

 		
 delete-objects

 		
 get-object

 		
 get-objects

 		
 set-cors-policy and get-cors-policy

 		
 debug-bucket

 		
 Policy documents

 		
 read-write (default)

 		
 –read-only

 		
 –write-only

 		
 –prefix my-prefix/

 		
 –prefix my-prefix/ –read-only

 		
 –prefix my-prefix/ –write-only

 		
 public bucket policy

 		
 Command help

 		
 s3-credentials –help

 		
 s3-credentials create –help

 		
 s3-credentials debug-bucket –help

 		
 s3-credentials delete-objects –help

 		
 s3-credentials delete-user –help

 		
 s3-credentials get-cors-policy –help

 		
 s3-credentials get-object –help

 		
 s3-credentials get-objects –help

 		
 s3-credentials list-bucket –help

 		
 s3-credentials list-buckets –help

 		
 s3-credentials list-roles –help

 		
